PRICING FORMULA FOR EXCHANGE OPTION IN FRACTIONAL BLACK-SCHOLES MODEL WITH JUMPS

KYONG-HUI KIM, MYONG-GUK SIN AND UN-HUA CHONG

Abstract. In this paper pricing formula for exchange option in a fractional Black-Scholes model with jumps is derived. We found out some errors in proof of pricing formula for European call option [7]. At first we revise these errors and then extend this result to pricing formula for exchange option in fractional Black-Scholes model with jumps.

Key Words: Pricing formula, Exchange option, Fractional Black-Scholes model, Jump noise.

2010 Mathematics Subject Classification: Primary: 60G22; Secondary: 91B25.

1. Introduction

Fractional Black-Scholes model with jumps is as follows [7].

\begin{equation}
\begin{aligned}
\, dB(t) &= (r_d - r_f)B(t)dt, \quad B(0) = 1, \\
\, dS(t) &= S(t) \left((\mu - \lambda \xi)dt + \sigma dB_H(t) + (e^\xi - 1)dN(t) \right), \\
\, S(0) &= S,
\end{aligned}
\end{equation}

(1.1)

where \(r_d, r_f \) are the short-term domestic interest rate and foreign interest rate respectively, and these are known. \(S(t) \) denotes the spot exchange rate at time \(t \) and \(\mu, \sigma \) are assumed to be constants. \(B_H(t) \) is a fractional Brownian motion and \(N(t) \) is a Poisson process with rate \(\lambda \). \(\xi(t) \) is jump size percent at time \(t \) which is sequence of independent
identically distributed, and \((e^{\xi(t)} - 1) \sim N\left(\mu_{\xi(t)}, \sigma_{\xi(t)}^2\right)\). In addition, all three sources of randomness, the fractional Brownian motion \(B_H(t)\), the Poisson process \(N(t)\) and jump size \(e^{\xi(t)} - 1\) are assumed to be independent.

Currencies are different with stocks; moreover since geometric Brownian motion cannot represent movement currency returns precisely, some papers have provided evidence of mispricing for currency options by standard option price model [1]. Merton proposed a jump-diffusion process with Poisson jump to match the abnormal fluctuation of stock price [3, 5]. Non-normality, non-independence and nonlinearity were discovered in empirical researches of currency return processes. To capture these non-normal behaviors, scholars have considered other distributions with fat tails such as Pareto-stable distribution and tried to interpret long memory and self-similarity using fractional Brownian motion. Research interest for interpreting these abnormal phenomena was re-encouraged by new insights in stochastic analysis based on the Wick integration [2]. Neucula and Meng et al. derived fractional Black-Scholes formula for option pricing using geometric fractional Brownian motion [6, 4]. Model (1.1), the combination of Poisson jumps and fractional Brownian motion was introduced and pricing formula for European call option was derived in [7], but we found out some errors in evaluation of quasi-expectation. In this paper we revise pricing formula for European call option and derive pricing formula for exchange option in fractional Black-Scholes model with jumps and so generalize previous pricing formula for European call option.

2. Preliminaries

We describe some necessary lemmas.

Lemma 2.1. ([6]) (Geometric fractional Brownian motion) Consider the fractional differential equation

\[
dX(t) = X(t) \left(\mu dt + \sigma dB_H(t)\right), \quad X(0) = x.
\]

We have that

\[
X(t) = x \exp \left(\sigma B_H(t) + \mu t - \frac{1}{2} \sigma^2 t^{2H}\right).
\]
Pricing formula for exchange option in fractional Black-Scholes model with jumps

Lemma 2.2. ([6]) Let f be a function such that $E[f(B_H(T))]<\infty$. Then for every $t<T$ we have

$$
\tilde{E}_t[f(B_H(T))] = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi(T^2H-t^2H)}} \exp\left(-\frac{(x-B_H(t))^2}{2(T^2H-t^2H)}\right) f(x) dx,
$$

where $\tilde{E}[-]$ denotes quasi-conditional expectation with respect to $F_t^H = B(H(s), s < t)$. That is for $G = \sum_{n=0}^{\infty} \int_{\mathbb{R}} g_n dB^{\otimes n}_H \in G^*$ we define as

$$
\tilde{E}_t[G] := \tilde{E}[G|F_t^H] = \sum_{n=0}^{\infty} \int_{\mathbb{R}} g_n(s) \chi_{0 \leq s \leq t}(s) dB^{\otimes n}_H(s).
$$

Let $\theta \in \mathbb{R}$. Consider the process

$$
B_H^\theta(t) = B_H(t) + \theta t^{2H} = B_H(t) + \int_0^t 2H\theta r^{2H-1} dr,
$$

This process is a fractional Brownian motion under new measure μ^* by fractional Girsanov theorem, where measure μ^* is defined as $d\mu^*/d\mu = Z(t) = \exp\left(-\theta B_H(t) - \frac{\theta^2}{2} t^{2H}\right)$. We will denote by $\tilde{E}_t^*[-]$ the quasi-conditional expectation with respect to μ^*.

Lemma 2.3. ([6]) Let f be a function such that $E[f(B_H(T))]<\infty$. Then for every $t<T$

$$
\tilde{E}_t^*[f(B_H(T))] = \frac{1}{Z(t)} \tilde{E}_t[f(B_H(T))Z(T)].
$$

Lemma 2.4. ([6]) (fractional risk-neutral evaluation) The price at every $t \in [0, T]$ of a bounded F_t^H-measurable claim $F \in L^2(\mu)$ is given by $F(t) = e^{-r(T-t)} \tilde{E}_t[F]$.

3. Main results

Theorem 3.1. In fractional Black-Scholes model (1.1) with jumps, pricing formula for European call option is as follows.

$$
V(S(t), t) = \sum_{n=0}^{\infty} \frac{\lambda^n(T-t)^n}{n!} e^{-\lambda(T-t)} S_n
$$

$$
\times \left\{ S(t) \exp\left(-\lambda \mu \xi (T-t) + \sum_{j=1}^{n} \xi_j \right) \Phi(d_+) - Ke^{-(r_d-r_f)(T-t)} \Phi(d_-) \right\},
$$
where ε_n denotes the expectation operator over the distribution of $\exp\left(\sum_{j=1}^n \xi_j\right)$ and

$$d_\pm = \frac{\ln(S(t)/K) + \sum_{j=1}^n \xi_j + (r_d - r_f - \lambda\mu\xi)(T - t)}{\sigma\sqrt{T^{2H} - t^{2H}}} \pm \frac{1}{2}\sigma\sqrt{T^{2H} - t^{2H}}.$$

Proof. It was proved in [2] that model (1.1) is complete and does not have an arbitrage opportunity. Thus under risk-neutral measure \hat{P}_H model (1.1) can be expressed as

$$dS(t) = S(t) \left\{ (r_d - r_f)dt + \sigma d\hat{B}_H(t) + (e^\xi - 1)dN(t) \right\},$$

where risk-neutral measure \hat{P}_H is defined as

$$\frac{d\hat{P}_H}{dP_H} = \exp\left\{-\theta B_H(t) - \frac{\theta^2}{2}t^{2H}\right\},$$

under this measure process $\hat{B}_H(t) = B_H(t) + \theta t^{2H}$ is a fractional Brownian motion and $\theta = (\mu - \lambda\mu\xi + r_f - r_d)/\sigma$. By [7] the solution of Eq. (3.1) is expressed as

$$S(T) = S(t)\exp\left\{ (r_d - r_f - \lambda\mu\xi)(T - t) - \frac{1}{2}\sigma^2(T^{2H} - t^{2H}) \right.$$

$$+\sigma(\hat{B}_H(T) - \hat{B}_H(t)) + \sum_{j=1}^{N(T-t)} \xi_j \right\},$$

By Lemma 2.4 the price at t for European call option $F = (S(T) - K)^+$ is

$$V(S(t), t) = e^{-(r_d - r_f)(T - t)}\tilde{E}_t[F] = e^{-(r_d - r_f)(T - t)}\tilde{E}_{\hat{P}_H}[F|\mathcal{F}_t].$$

If we define as

$$S_n(T) = S(t)\exp\left\{ (r_d - r_f - \lambda\mu\xi)(T - t) - \frac{1}{2}\sigma^2(T^{2H} - t^{2H}) \right.$$

$$+\sigma(\hat{B}_H(T) - \hat{B}_H(t)) + \sum_{j=1}^n \xi_j \right\},$$
then
\[V(S(t), t) = e^{-(r_d - r_f)(T-t)} \tilde{E}_{\tilde{P}_H}[(S(T) - K)^+ | F_t^H] \]
\[= e^{-(r_d - r_f)(T-t)} \sum_{n=0}^{\infty} \frac{\lambda^n(T-t)^n}{n!} e^{-\lambda(T-t)} \tilde{E}_{\tilde{P}_H} \]
\[[(S_n(T) - K)^+ | F_t^H]. \]

(3.2)

Since
\[\tilde{E}_{\tilde{P}_H}[(S_n(T) - K)^+ | F_t^H] = \tilde{E}_{\tilde{P}_H} [S_n(T) \chi_{\{S_n(T) > K\}} | F_t^H] \]
\[- K \tilde{E}_{\tilde{P}_H} [\chi_{\{S_n(T) > K\}} | F_t^H], \]

we firstly estimate \(\tilde{E}_{\tilde{P}_H} [\chi_{\{S_n(T) > K\}} | F_t^H]. \) From Lemma 2.2, we have
\[\tilde{E}_{\tilde{P}_H} [\chi_{\{S_n(T) > K\}} | F_t^H] = \tilde{E}_{\tilde{P}_H} [\chi_{\{B_H(t) > d_+\}} | F_t^H] \]
\[= \frac{1}{\sqrt{2\pi(T^{2H} - t^{2H})}} \int_{d_+}^{\infty} \exp \left(-\frac{(x - \hat{B}_H(t))^2}{2(T^{2H} - t^{2H})} \right) dx \]
\[= \frac{1}{\sqrt{2\pi}} \int_{d_+ - \hat{B}_H(t)}^{\infty} \exp \left(-\frac{y^2}{2} \right) dy \]
\[= \Phi \left(\frac{\hat{B}_H(t) - d_+}{\sqrt{T^{2H} - t^{2H}}} \right) \]
\[= \Phi(d_-), \]

(3.4)

where
\[d_- = \left(\ln(K/S(t)) - (r_d - r_f - \lambda \mu) (T-t) + \frac{1}{2} \sigma^2 (T^{2H} - t^{2H}) \right) \]
\[- \sum_{j=1}^{n} \xi_j + \sigma \hat{B}_H(t) / \sigma. \]

Next we estimate \(\tilde{E}_{\tilde{P}_H} [S_n(T) \chi_{\{S_n(T) > K\}} | F_t^H]. \) Let \(B_H^*(t) = \hat{B}_H(t) - \sigma t^{2H}, \) then from fractional Girsanov formula, there exists a probability measure \(P_H^* \) such that \(B_H^*(t) \) is a fractional Brownian motion. In fact, the probability measure \(P_H^* \) is defined as follows:
\[\frac{dP_H^*}{dP} = \exp \left\{ \sigma d\hat{B}_H(t) - \frac{1}{2} \sigma^2 t^{2H} \right\} = Z(t). \]
From Lemma 2.3 we have
\[
\tilde{E}_{P_H}[S_n(T)\chi_{\{S_n(T) > K\}}|\mathcal{F}_t^H]
\]
\[
= S \exp \left((r_d - r_f - \lambda \mu \xi) T + \sum_{j=1}^{n} \xi_j \right)
\times \tilde{E}_{P_H}[Z(T)\chi_{\{S_n(T) > K\}}|\mathcal{F}_t^H]
\]
\[
= S \exp \left((r_d - r_f - \lambda \mu \xi) T + \sum_{j=1}^{n} \xi_j \right)
\times Z(t) \tilde{E}_{P_H}[\chi_{\{B_H(T) > d_+\}}|\mathcal{F}_t^H]
\]
\[
= S(t) \exp \left((r_d - r_f - \lambda \mu \xi) (T - t) + \sum_{j=1}^{n} \xi_j \right)
\times \tilde{E}_{P_H}[\chi_{\{B_H(T) > d_+\}}|\mathcal{F}_t^H]
\]
\[
= S(t) \exp \left((r_d - r_f - \lambda \mu \xi) (T - t) + \sum_{j=1}^{n} \xi_j \right) \Phi(d_+),
\]
where
\[
d_+^* = d_-^* - \sigma T^{2H},
\]
\[
d_+ = \frac{B_H^*(t) - d_+^*}{\sqrt{T^{2H} - t^{2H}}} = d_- + \sigma (T^{2H} - t^{2H}).
\]

Now substituting Eq. (3.4) and Eq. (3.5) into Eq. (3.2) and Eq. (3.3) implies the statement of the theorem. \(\square\)

Theorem 3.2. In fractional Black-Scholes model (1.1) with jump noise, pricing formula for exchange option of two foreign currencies is as follows.

\[
V(S(t), t) = \sum_{n=0}^{\infty} \frac{\lambda^n (T - t)^n}{n!} e^{-\lambda(T-t)} \left\{ S_1(t) \exp \left(-\lambda \mu \xi (T - t) + \sum_{j=1}^{n} \xi_j^{(1)} \right) \Phi(\tilde{d}_+) - S_2(t) \exp \left(-\lambda \mu \xi (T - t) + \sum_{j=1}^{n} \xi_j^{(2)} \right) \Phi(\tilde{d}_-) \right\},
\]
where \tilde{d}_\pm denotes the expectation operator over the distribution of $\exp\left(\sum_{j=1}^n \xi_j\right)$ and

$$
\tilde{d}_\pm = \ln\left(\frac{S_1(t)}{S_2(t)}\right) + \frac{1}{2}(\sigma_1 - \sigma_2)^2(T^{2H} - t^{2H}) + \sum_{j=1}^n \left(\xi_j^{(1)} - \xi_j^{(2)}\right).
$$

Proof. Under the risk-neutral measure \hat{P}_H, Exchange rates for two foreign currencies $S_1(t), S_2(t)$ satisfy the following equations:

$$
dS_1(t) = S_1(t) \left\{ (r_d - r_f)dt + \sigma_1 d\hat{B}_H(t) + (e^{\xi_1} - 1)dN(t) \right\},
$$

$$
dS_2(t) = S_2(t) \left\{ (r_d - r_f)dt + \sigma_2 d\hat{B}_H(t) + (e^{\xi_2} - 1)dN(t) \right\}.
$$

Using Lemma 2.4, we have the price of exchange option at t

$$
V(S_1(t), S_2(t), t) = e^{-(r_d-r_f)(T-t)} \tilde{E}_{\hat{P}_H}[(S_1(T) - S_2(T))^+ \mid \mathbb{F}_t^H]
$$

$$
= e^{-(r_d-r_f)(T-t)} \sum_{n=0}^{\infty} \frac{\lambda^n(T-t)^n}{n!} e^{-\lambda(T-t)} \tilde{E}_{\hat{P}_H}
$$

$$
\times [(S_1^n(T) - S_2^n(T))^+ \mid \mathbb{F}_t^H],
$$

where

$$
S_1^n(T) = S_1(t)\exp\left\{ (r_d - r_f - \lambda\mu_\xi)(T-t) - \frac{1}{2}\sigma_i^2(T^{2H} - t^{2H}) \right.
$$

$$
+ \sigma_i(\hat{B}_H(T) - \hat{B}_H(t)) + \sum_{j=1}^n \xi_j^{(i)} \bigg\}.
$$

Also we see that the following facts hold:

$$
\tilde{E}_{\hat{P}_H}[(S_1^n(T) - S_2^n(T))^+ \mid \mathbb{F}_t^H] = \tilde{E}_{\hat{P}_H} \left[S_2^n(T) \left(\frac{S_1^n(T)}{S_2^n(T)} - 1 \right)^+ \right] \mid \mathbb{F}_t^H. \right.
$$

Now let

$$
\frac{dQ_H}{d\hat{P}_H} = \exp \left\{ \sigma_2 \hat{B}_H(t) - \frac{1}{2}\sigma_2^2 t^{2H} \right\} = \tilde{Z}(t).
$$
Then under this measure Q_H, $\tilde{B}_H(t) = \hat{B}_H(t) - \sigma_2^2 t^{2H}$ is a fractional Brownian motion and from Lemma 2.3 we have

\[
\begin{align*}
\mathbb{E}_{P_H}\left[S_{2n}(T) \left(\frac{S_{1n}(T)}{S_{2n}(T)} - 1 \right)^+ \left| \mathcal{F}_t^H \right. \right] \\
= \mathbb{E}_{P_H}\left[S_2 \exp \left\{ (r_d - r_f - \lambda \mu \xi)T + \sum_{j=1}^{n} \xi_j^{(2)} \right\} \tilde{Z}(T) \right. \\
\times \left(\frac{S_{1n}(T)}{S_{2n}(T)} - 1 \right)^+ \left| \mathcal{F}_t^H \right. \right] \\
= S_2 \exp \left\{ (r_d - r_f - \lambda \mu \xi)T + \sum_{j=1}^{n} \xi_j^{(2)} \right\} \tilde{Z}(t) \mathbb{E}_{Q_H} \\
\times \left(\frac{S_{1n}(T)}{S_{2n}(T)} - 1 \right)^+ \left| \mathcal{F}_t^H \right. \right] \\
= S_2 \exp \left\{ (r_d - r_f - \lambda \mu \xi)(T-t) \right\} \mathbb{E}_{Q_H} \\
\times \left(\frac{S_{1n}(T)}{S_{2n}(T)} - 1 \right)^+ \left| \mathcal{F}_t^H \right. \right] \\
= S_2(t) \exp \left\{ (r_d - r_f - \lambda \mu \xi)(T-t) + \sum_{j=1}^{n} \xi_j^{(2)} \right\} \mathbb{E}_{Q_H} \\
\times \left(\frac{S_{1n}(T)}{S_{2n}(T)} - 1 \right)^+ \left| \mathcal{F}_t^H \right. \right].
\end{align*}
\]

(3.7)

Setting $t = 0, T = t$ and considering the expression of $S_{1n}(T)$, we have

\[
\frac{S_{1n}(t)}{S_{2n}(t)} = \frac{S_1}{S_2} \exp \left\{ (\sigma_1 - \sigma_2)d\hat{B}_H(t) - \frac{1}{2}(\sigma_1^2 - \sigma_2^2)t^{2H} + \sum_{j=1}^{n} (\xi_j^{(1)} - \xi_j^{(2)}) \right\} \\
= \frac{S_1}{S_2} \exp \left\{ (\sigma_1 - \sigma_2)d\hat{B}_H(t) - \frac{1}{2}(\sigma_1 - \sigma_2)^2 t^{2H} + \sum_{j=1}^{n} (\xi_j^{(1)} - \xi_j^{(2)}) \right\}.
\]
Thus stochastic process \(\frac{S_{1n}(t)}{S_{2n}(t)} \) satisfies the following stochastic differential equation
\[
d\left(\frac{S_{1n}(t)}{S_{2n}(t)} \right) = \frac{S_{1n}(t)}{S_{2n}(t)} \left((\sigma_1 - \sigma_2) d\tilde{B}_H(t) + \left(e^{\xi(1)} - e^{\xi(2)} \right) dN(t) \right),
\]
so quasi-conditional expectation in Eq. (3.7) can be considered as a price for European call option with exercise price \(K=1 \). Since this is the special case of Theorem 3.1 with the parameters
\[
S_n(T) = \frac{S_{1n}(T)}{S_{2n}(T)}, \ r_d - r_f = 0, \ \sigma = \sigma_1 - \sigma_2, \ \xi = \xi(1) - \xi(2), \ \mu_\xi = 0, \ K = 1,
\]
we have
\[
\tilde{E}_{Q_H} \left[\left(\frac{S_{1n}(T)}{S_{2n}(T)} - 1 \right) \bigg| \mathcal{F}_t \right] = \frac{S_1(t)}{S_2(t)} \exp \left\{ \sum_{j=1}^{n} (\xi_j^{(1)} - \xi_j^{(2)}) \right\} \Phi(\tilde{d}_+) - \Phi(\tilde{d}_-).
\]
Thus substituting above equation into Eq. (3.7) and again into Eq. (3.6), we obtain the result of theorem. □

Acknowledgments

The authors wish to thank anonymous referees for their comments and suggestions.

References

Kyong-Hui Kim
Faculty of Mathematics, University of *Kim Il Sung* University, Pyongyang, D.P.R. Korea
Email: kim.kyonghui@yahoo.com

Myong-Guk Sin
Faculty of Mathematics, University of *Kim Il Sung* University, Pyongyang, D.P.R. Korea
Email: sinmyongguk@yahoo.com

Un-Hua Chong
Faculty of Mathematics, University of *Kim Il Sung* University, Pyongyang, D.P.R. Korea