CODING THEORY AND HYPER BCK-ALGEBRAS

ATAMEWOUE TSAFACK SURDIVE, NDJEYA SLESTIN AND LELE CLESTIN

ABSTRACT. In this paper we define the notion of a hyper BCK valued function on a set and investigate some of its related properties as Y.B. Jun, S.Z. Song and C. Flaut have done for a BCK-algebras. We construct the codes generated by a hyper BCK valued function and provide an algorithm which allow to find a hyper BCK-algebra starting from a given binary block code. Moreover we establish the link between the hyper BCK-algebra constructed from a binary block code and hyper BCK-ideal on a hyper BCK-algebra.

Key Words: Hyper BCK-algebra, Coding theory, Block code, Hyper BCK-ideal.

2010 Mathematics Subject Classification: Primary: 06F99; Secondary: 06F35 , 94B05.

1. Introduction

The hyperstructure theory (called also multialgebra) is introduced in 1934 by F. Marty [7]. Since then a great deal of literature has been produced on the applications of the hyperstructures. Later K. Iseki [4] initiated in 1966 the study of BCK-algebras as a generalization of the concept of set-theoretic difference and propositional calculi. Y.B. Jun et al. [6] applied for the first time the hyperstructures to BCK-algebra and introduced in 2000 the notion of a hyper BCK-algebra with is a generalization of BCK-algebra.

Y.B. Jun and S.Z. Song, C. Flaut and T.S. Atamewoue et al. [1, 3, 5] study the connection between BCK-algebras, residuated lattices and coding theory.
The main purpose of this paper is to study coding theory in the context of hyper BCK-algebras. This work is organized as follows: In section 2, we present some basic notions about hyper BCK-algebraic that we will use in the sequel. In section 3, we introduce the notion of hyper BCK-valued functions and investigated several of their properties. In section 4, we give the construction of the block codes by using the notion of hyper BCK-valued functions, and after haves show that in some circumstances every finite hyper BCK-algebras determines a binary block code, we end by a link between the constructed block codes and some hyper BCK-ideal.

2. Preliminaries

We will recall some known concepts related to hyper BCK-algebra which will be helpful in further section. For more about hyper BCK-algebra we refer the reader to [2, 6, 8]. Let H be a non-empty set endowed with a hyperoperation "$*$", i.e. a mapping of $H \times H$ into the family of nonempty subsets of H. For two subsets A and B of H, denote by $A*B$ the set $\bigcup_{a \in A, b \in B} a * b$. We shall use $x*y$ instead of $x*\{y\}$, $\{x\}*y$, or $\{x\} * \{y\}$.

Definition 2.1. By a hyper BCK-algebra we mean a non-empty set H endowed with a hyperoperation $*$ and a constant θ satisfying the following axioms for all $x,y,z \in H$:

(i) $(x * z) * (y * z) \ll x * y$,
(ii) $(x * y) * z = (x * z) * y$,
(iii) $x * y \ll \{x\}$,
(vi) $x \ll y$ and $y \ll x$ imply $x = y$,

Where $x \ll y$ is defined by $\theta \in x * y$ and $A \ll B$ by for all $a \in A$, there exists $b \in B$ such that $a \ll b$, for every $A, B \subseteq H$. Note that "\ll" is called hyper order in H.

In any hyper BCK-algebra $(H, *, \theta)$ the following hold for all $x,y,z \in H$:

(a1) $x * \theta = \{x\}$, $\theta * x = \{\theta\}$ and $\theta * \theta = \{\theta\}$,
(a2) $\theta \ll x$,
(a3) $x * \theta \ll \{y\}$ implies $x \ll y$ and $y * x \ll z * x$,
(a4) $y \ll z$ implies $x * z \ll x * y$,
(a5) $x * y = \{\theta\}$ implies $(x * z) * (y * z) = \{\theta\}$.

Definition 2.2. Let I be a non-empty subset of a hyper BCK-algebra H. Then I is called a hyper BCK-ideal of H if the following hold:
(i) $\theta \in I$,
(ii) $x * y \ll I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Definition 2.3. Let I be a non-empty subset of a hyper BCK-algebra H. Then I is called a weak hyper BCK-ideal of H if the following hold:
(i) $\theta \in I$,
(ii) $(x * y) \cap I \neq \emptyset$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Remark 2.4. Every hyper BCK-ideal of a hyper BCK-algebra H is a weak hyper BCK-ideal of H, but the converse may not be true [6].

3. Hyper BCK-valued functions

In what follows let A and H denote a nonempty set and a hyper BCK-algebra respectively, unless otherwise specified.

Definition 3.1. A mapping $\tilde{A} : A \to H$ is called a hyper BCK-valued function (briefly, hyper BCK-function) on A.

Definition 3.2. A cut function of \tilde{A}, for $q \in H$ is defined to be a mapping $\tilde{A}_q : A \to \{0, 1\}$ such that $(\forall x \in A) (\tilde{A}_q(x) = 1 \iff \theta \in q * \tilde{A}(x))$.

Obviously, \tilde{A}_q is the characteristic function of $A_q = \{x \in A | \theta \in q * \tilde{A}(x)\}$, called a cut subset or a q-cut of \tilde{A}. Note that $A_\theta = A$.

Example 3.3. Let $A = \{x, y\}$ be a set and let $H = \{\theta, a, b\}$ be a hyper BCK-algebra with the following table:

<table>
<thead>
<tr>
<th></th>
<th>θ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>${\theta}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>a</td>
<td>${\emptyset}$</td>
<td>${\theta, a}$</td>
<td>${a}$</td>
</tr>
<tr>
<td>b</td>
<td>${\emptyset}$</td>
<td>${\emptyset}$</td>
<td>${\emptyset, \theta, b}$</td>
</tr>
</tbody>
</table>

The mapping $\tilde{A} : A \to H$ given by $\tilde{A} = \begin{pmatrix} x & y \\ a & b \end{pmatrix}$ is a hyper BCK-function. Its cut subsets are $A_\theta = A$, $A_a = \{x\}$, $A_b = \{y\}$.

Proposition 3.4. Every hyper BCK-function $\tilde{A} : A \to H$ on A is represented by the supremum of the set $\{q \in X | \tilde{A}_q(x) = 1\}$, that is $(\forall x \in A) (\tilde{A}(x) = \sup\{q \in X | \theta \in q * \tilde{A}(x)\})$.

Proof. For any $x \in A$, let $\tilde{A}(x) = r \in H$. Then $\theta \in r * \tilde{A}(x)$ and so $\tilde{A}_r(x) = 1$.

Assume that \(\tilde{A}_p(x) = 1 \) for \(p \in H \), then \(\theta \in p * \tilde{A}(x) = p * r \). Thus \(p \ll r \).

Since \(r \in \{ p \in H | \tilde{A}_p(x) = 1 \} \), it follows that \(\tilde{A}(x) = r = \sup \{ p \in H | \tilde{A}_p(x) = 1 \} \). \(\square \)

For a hyper BCK-function \(\tilde{A} : A \to H \) on \(A \), consider the following sets:

\(A_H := \{ A_q | q \in H \}; \tilde{A}_H := \{ \tilde{A}_q | q \in H \} \).

Proposition 3.5. If \(\tilde{A} : A \to H \) is a hyper BCK-function on \(A \), we can easily obtain the following results:

1. \(\forall x \in A \) \((\tilde{A}(x) = \sup \{ q * \tilde{A}_q(x) | q \in H \}) \),
2. where \(q * \tilde{A}_q(x) = \begin{cases} q & \text{if } \tilde{A}_q(x) = 1; \\ \theta & \text{otherwise}. \end{cases} \)
3. \(\forall q, p \in H \) \((\theta \in p * q \iff A_q \subseteq A_p) \),
4. \(\forall x, y \in A \) \((\tilde{A}(x) \neq \tilde{A}(y) \iff A_{\tilde{A}(x)} \neq A_{\tilde{A}(y)}) \),
5. \(\forall q \in H \) \((\forall x \in A \) \((q * \tilde{A}(x) = \{ \theta \} \iff A_{\tilde{A}(x)} \subseteq A_q) \),
6. \(\forall x, y \in A \) \((\tilde{A}(x) * \tilde{A}(y) = \{ \theta \} \iff A_{\tilde{A}(y)} \subseteq A_{\tilde{A}(x)}) \),
7. \(\forall Y \subseteq H \) \((\exists \sup Y \in H \Rightarrow A_{\sup \{ q | q \in Y \}} = \bigcap \{ A_q | q \in Y \}) \). (Note here that the sup is define via the hyperorder “ \(\ll \) ”),
8. \(\forall S \subseteq H \) \((A_{\sup \{ q | q \in S \}} = \bigcap \{ A_q | q \in S \}) \),
9. \(\forall Y \subseteq H \) \((\exists \sup Y \in H \Rightarrow A_{\sup \{ q | q \in Y \}} = \bigcap \{ A_q | q \in Y \}) \).

The following example shows that the converse of (viii) may not be true in general.

Example 3.6. Let \(A = \{ x, y \} \) be a set and let \(H = \{ \theta, a, b, c \} \) be a hyper BCK-algebra with the following table:

\[
\begin{array}{c|c|c|c|c}
* & \theta & a & b & c \\
\hline
\theta & \{ \theta \} & \{ \theta \} & \{ \theta \} & \{ \theta \} \\
a & \{ a \} & \{ \theta, a \} & \{ \theta \} & \{ a \} \\
b & \{ b \} & \{ a \} & \{ \theta \} & \{ b \} \\
c & \{ c \} & \{ c \} & \{ c \} & \{ \theta \} \\
\end{array}
\]

The function \(\tilde{A} : H \to A \) given by \(\tilde{A} = \begin{pmatrix} x & y \\ a & c \end{pmatrix} \) is a hyper BCK-function on \(A \) and the cut sets of \(\tilde{A} \) are as follows: \(A_\theta = A, A_a = \{ x \}, \)
Atamewoue Tsafack S., Ndjeya S. and Lele C.

\[A_b = \emptyset, \ A_c = \{y\}. \]

\[\sup\{a, c\} \text{ does not exist but } A_a \cap A_c \in A_H. \]

4. Codes generated by hyper BCK-functions

Let \(\tilde{A} : A \to H \) be a hyper BCK-function on \(A \) and let \(\sim \) be a binary relation on \(H \) defined by \((\forall p, q \in H) (p \sim q \iff A_p = A_q)\). Then \(\sim \) is clearly an equivalence relation on \(H \).

Let \(\tilde{A}(A) := \{q \in H | \tilde{A}(x) = q \text{ for some } x \in A\} \).

Let \(x/\sim = \{y \in H | x \sim y\} \), for any \(x \in H \). \(x/\sim \) is called equivalence class containing \(x \). It is also easy to see that \(\tilde{A}(x) = \sup(x/\sim) \) is the greatest element of \(\sim \)-class to which it belongs and that every \(\sim \)-class contains exactly one element.

4.1. From a hyper BCK-algebra to a block code

Let \(A = \{1, 2, \ldots, n\} \) and let \(H \) be a finite hyper BCK-algebra. Every hyper BCK-function \(\tilde{A} : A \to H \) on \(A \) determines a binary block code \(V \) of length \(n \) in the following way:

To every \(x/\sim \), where \(x \in H \), there corresponds a codeword \(v_x = x_1x_2\ldots x_n \) such that \(x_i = j \iff \tilde{A}_c(i) = j \) for \(i \in A \) and \(j \in \{0,1\} \).

Let \(v_x = x_1x_2\ldots x_n \) and \(v_y = y_1y_2\ldots y_n \) be two codewords belonging to a binary block code \(V \). We can define an order relation \(\leq_c \) on the set codewords belonging to a binary block code \(V \) as follows:

\[v_x \leq_c v_y \iff y_i \leq x_i \text{ for } i = 1, 2, \ldots, n. \]

Example 4.1. (1) Let \(H = \{0, 1, 2\} \) be a hyper BCK-algebra defined by the following table:

<table>
<thead>
<tr>
<th>* (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0} & {0} & {0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>{1} & {0} & {0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{2} & {2} & {0,2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Let \(\tilde{A} : H \to H, x \mapsto \begin{cases} 0, & \text{if } x=0; \\ 1, & \text{if } x=1; \\ 2, & \text{if } x=2. \end{cases} \)

\[
\begin{array}{ccc}
A_0 & 0 & 1 & 2 \\
A_1 & 1 & 1 & 1 \\
A_2 & 0 & 1 & 0 \\
\end{array}
\]

Then \(V = \{111, 010, 001\} \) and
(2) Let $H = \{\theta, a, b, c\}$ be a hyper BCK-algebra defined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>θ</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>${\theta}$</td>
<td>${\theta}$</td>
<td>${\theta}$</td>
<td>${\theta}$</td>
</tr>
<tr>
<td>a</td>
<td>${a}$</td>
<td>${\theta, a}$</td>
<td>${\theta, a}$</td>
<td>${\theta, a}$</td>
</tr>
<tr>
<td>b</td>
<td>${b}$</td>
<td>${b}$</td>
<td>${\theta, a}$</td>
<td>${\theta, a}$</td>
</tr>
<tr>
<td>c</td>
<td>${c}$</td>
<td>${c}$</td>
<td>${c}$</td>
<td>${\theta, a}$</td>
</tr>
</tbody>
</table>

Let $\tilde{A} : H \rightarrow H$ be a hyper BCK-function on H given by $\tilde{A} = \begin{pmatrix} \theta & a & b & c \\ \theta & a & b & c \end{pmatrix}$

Then

\[
\begin{array}{c|cccc}
\theta & a & b & c \\
\hline
A_\theta & 1 & 1 & 1 & 1 \\
A_a & 0 & 1 & 1 & 1 \\
A_b & 0 & 0 & 1 & 1 \\
A_c & 0 & 0 & 0 & 1 \\
\end{array}
\]

Thus $V = \{1111, 0111, 0011, 0001\}$ and
Theorem 4.2. Every finite hyper BCK-algebra H determines a block codes V such that (H, \ll) is isomorphic to (V, \leq_c).

Proof. Let $H = \{a_1, a_2, ..., a_n\}$ be a finite hyper BCK-algebra in which $a_1 = \theta$ and let $A : H \rightarrow H$ be the identity hyper BCK-function on H. The decomposition of A provides a family $\{\bar{A}_q|q \in H\}$ which is the desired code under the order (\leq_c). Let $f : H \rightarrow \{\bar{A}_q|q \in H\}$ be a function defined by $f(q) = \bar{A}_q$ for all $q \in H$. Since every \sim-class contains exactly one element, hence f is one-to-one.

Let $x \in H$ and $p, q \in H$ be such that $p \ll q$. If $\bar{A}_q(x) = 0$, then $\bar{A}_p(x) \leq \bar{A}_p(x)$. If $\bar{A}_q(x) = 1$, then $\theta \in q \ast \bar{A}(x)$, i.e. $q \ll \bar{A}(x)$. Thus $P \ll q$ and $q \ll \bar{A}(x)$ by using the transitivity of the relation \ll, we obtain $p \ll \bar{A}(x)$, i.e. $\theta \in p \ast \bar{A}(x)$. Therefore $\bar{A}_p(x) = 1$ and we conclude that $\bar{A}_p \leq_c \bar{A}_q$.

Therefore f is an isomorphism. \hfill \Box

4.2. From a binary block code to a hyper BCK-functions.

Example 4.3. Let (H, \leq) be a finite partial ordered set with the minimum element denoted by θ. We define the following hyper operation \ast on H:

\[
\begin{aligned}
\{ \theta \ast x = \{\theta\} \text{ and } x \ast x = \{\theta\} \}, & \quad x \in H; \\
x \ast y = \{\theta\}, \text{ if } x \leq y & \quad x, y \in H; \\
x \ast y = \{x\}, \text{ if } y < x & \quad x, y \in H; \\
x \ast y = \{y\}, \text{ if } x, y \text{ can't be compared} & \quad x, y \in H.
\end{aligned}
\]

It is easy to see that (H, \ast, θ) is a hyper BCK-algebra.

If the above example of hyper BCK-algebra has n elements, we will denote it with C_n. Let V be a binary block code with n codewords of length n. We consider the matrix $M_V = (m_{i,j})_{i,j \in \{1,2,...,n\}} \in M_n(\{0,1\})$ with the rows consisting of the codewords of V. This matrix is called the matrix associated to the code V.

Theorem 4.4. With the above notations, if the codeword $\overline{11...1}$ is in V and the matrix M_V is upper triangular with $m_{ii} = 1$, for all $i \in \{1,2,...,n\}$, there are a set A with n elements, a hyper BCK-algebra H and a hyper BCK-function $f : A \rightarrow H$ such that f determines V.

\end{document}
Proof. We consider on V the lexicographic order, denoted by \leq_{lex}. It is clear that (V, \leq_{lex}) is a totally ordered set.

Let $V = \{w_1, w_2, \ldots, w_n\}$, with $w_1 \geq_{\text{lex}} w_2 \geq_{\text{lex}} \ldots \geq_{\text{lex}} w_n$. This implies that $w_1 = 11 \cdots 1$ and $w_n = 00 \cdots 0 1$. On V, we define a partial order \leq_{c} as in construction of the code by the hyper BCK-function. Now, (V, \leq_{c}) is a partially ordered set with $w_1 \leq_{c} w_i \leq_{c} w_n$, $i \in \{2, \ldots, n - 1\}$.

We remark that w_1 correspond to θ and w_n is the maximal element in (V, \leq_{c}).

We define on (V, \leq_{c}, θ) a hyper operation $" \ast "$ as in Example 4.3.

Then $H = (V, \ast, \theta)$ is a hyper BCK-algebra and V is isomorphic to H.

We consider $A = V$ and the identity map $f : A \to H$, $w \mapsto w$, as a hyper BCK-function on A. The decomposition of f provides a family $V_H = \{f_r : A \to \{0, 1\} | f_r(x) = 1 \iff \theta \leq x \ast f(x), \forall x \in A, r \in H\}$.

This family is the binary block-code V relative to the order relation \leq_{c}. Indeed, let $w_k \in V$, $1 < k < n$, then $w_k = 00 \cdots 0 x_{i_k} \cdots x_{i_n}$, with $x_{i_k}, \ldots, x_{i_n} \in \{0, 1\}$.

$\forall j \in (k-1)-\text{time}$ If $x_{i_j} = 0$, it result that $w_k \leq_{c} w_{i_j}$ and $\theta \leq w_k \ast w_{i_j}$.

If $x_{i_j} = 1$, we obtain that $w_{i_j} \leq_{c} w_k$ or $w_{i_j} \ast w_k$ can’t be compared, therefore $w_k \ast w_{i_j} = \{w_k\}$ or $w_k \ast w_{i_j} = \{w_{i_j}\}$. \square

The following example show that a binary block code as in Theorem 4.1 can be determined by two or more hyper BCK-algebras.

Example 4.5. Let $V = \{000010, 000110, 011101, 111111, 001011, 000001\}$ be a binary block code. Using the lexicographic order, the code V can be written $V = \{111111, 011101, 001011, 000010, 000001\} = \{w_1, w_2, w_3, w_4, w_5, w_6\}$. Define the partial order \leq_{c} on V, we remark that $w_1 \leq_{c} w_i$ for $i \in \{2, 3, 4, 5, 6\}$; $w_2 \leq_{c} w_6$; $w_3 \leq_{c} w_5, w_6$; $w_4 \leq_{c} w_5$; w_2 can’t be compared with w_3, w_4, w_5; w_4 cant be compared with w_3, w_6; and w_5 cant be compared with w_6. The operation $" \ast "$ on V is given in the following table:

<table>
<thead>
<tr>
<th>\ast</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>w_2</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>w_3</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>w_4</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>w_5</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>w_6</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
</tbody>
</table>
Obviously, V with the operation " \ast " is a hyper BCK-algebra. We remark that the same binary block code V can be obtained from the hyper BCK-algebra (H, \ast, θ) with hyper BCK-function $\tilde{A} : V \to V$, $\tilde{A}(x) = x$. From the associated Cayley multiplication tables, it is obvious that the hyper BCK-algebras (H, \ast, θ) and (V, \ast, w_1) are not isomorphic. From here, we obtain that hyper BCK-algebra associated to a binary block-code as in Theorem 4.4 is not unique up to an isomorphism.

Proposition 4.6. With the above notations, we consider V as a binary block code with n codewords of length m (with $n \neq m$), or a block-code with n codewords of length n such that the codeword $11\ldots1_{\text{n-time}}$ is not in V, or a block-code with n codewords of length n such that the matrix M_V is not upper triangular. There are a natural number $q = \max\{m, n\}$, a set A with m elements and a hyper BCK-function $\tilde{A} : A \to C_q$, where C_q denote the hyper BCK-algebra with q elements, such that the obtained block-code V_{C_q} contains the block-code V as a subset.

Proof. Let C be a binary block-code, $C = \{w_1, w_2, \ldots, w_n\}$, with codewords of length m. We consider the codewords w_1, w_2, \ldots, w_n lexicographic ordered, $w_1 \leq_{\text{lex}} w_2 \leq_{\text{lex}} \ldots \leq_{\text{lex}} w_n$. Let $M \in \mathcal{M}_{n,m}(\{0,1\})$ be the associated matrix with the rows w_1, w_2, \ldots, w_n in this order. Using Proposition 2.8 in [3], we can extend the matrix M to a square matrix $M' \in \mathcal{M}_p(\{0,1\})$, $p = m + n$; such that $M' = (m'_{ij})_{i,j \in \{1,2,\ldots,p\}}$ is an upper triangular matrix with $m'_{ii} = 1$, for all $i \in \{1,2,\ldots,p\}$. If the first line of the matrix M' is not $11\ldots1_{\text{p-time}}$, then we insert the row $11\ldots1_{\text{p-time}}$ as a first row and the $10\ldots0_{\text{p+1-time}}$ as a first column. Let $q = p + 1$, applying Theorem 4.4 for the matrix M', we obtain a residuated lattice $C_q = \{x_1, x_2, \ldots, x_q\}$, with x_1 correspond to 0 and x_q correspond to 1, and a binary block-code V_{C_q}. Assuming that the initial column of the matrix
M have in the new matrix \(M' \) positions \(i_{j_i}, i_{j_2}, ..., i_{j_n} \in \{1, 2, ..., q\} \), let
\[A = \{ x_{j_1}, x_{j_2}, ..., x_{j_n} \} \subset Cq. \]
The hyper BCK-function \(f : X \rightarrow Cq \)
is such that \(f(x_{j_i}) = x_{j_i}, i \in \{1, 2, ..., m\} \), determines the binary-block code \(C_q \) such that \(C \subseteq V_{C_q} \) as restriction of the hyper BCK-function
\[f : C_q \rightarrow C_q \]
on \(A \) such that \(f(x_i) = x_i. \)

Let \(C \) be a binary block code with \(m \) codewords of length \(q \), with the above notations, let \(H \) be the associated BCK-algebra and \(W = \{\theta, w_1, \ldots, w_{m+q}\} \) the associated binary block code which include the code \(C \). We consider the codewords \(\theta, w_1, \ldots, w_{m+q} \) lexicographic ordered, \(\theta \geq_{\text{lex}} w_1 \geq_{\text{lex}} w_2 \geq_{\text{lex}} \ldots \geq_{\text{lex}} w_{m+q} \). Let \(M \in M_{m+q+1}(\{0, 1\}) \) be the associated matrix with the rows \(\theta, w_1, \ldots, w_{m+q} \) in this order. We denote with \(L_{w_i} \) and \(C_{w_j} \) the lines and columns in the matrix \(M \). The submatrix \(M' \) of the matrix \(M \) with the rows \(L_{w_1}, \ldots, L_{w_m} \) and the columns \(C_{w_{m+1}}, \ldots, C_{w_{m+q}} \) is the matrix associated to the code \(C \).

Remark 4.7. 1) If there exists \(x \in \{w_1, w_2, \ldots, w_m\} \) and \(y \in \{\theta, w_{m+1}, \ldots, w_{m+q}\} \) such that \(x \ll y \), then the set \(I = \{\theta, w_{m+1}, \ldots, w_{m+q}\} \) can’t be hyper BCK-ideal.

2) On \(W \), due to the order \(\leq_c \) given in the construction of code from a hyper BCK-function and to the hyper operation \(\ast \) define in Example 4.3, for the product of two elements of \(W \), we can have only two possibilities \(w_i * w_j = \{\theta\} \) or \(w_i * w_j = \{w_i\}, (w_i, w_j \in W \) and \(i, j \in \{1, m + q\} \).

Example 4.8. Let \(V = \{101, 110\} \) be a binary block code. Using the lexicographic order, the code \(V \) can be written \(V = \{110, 101\} = \{w_1, w_2\}. \)

Let \(M_V = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right) \) be the associated matrix. By Proposition 2.8 in [3],

we construct the matrix

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
= \begin{pmatrix}
w_1 \\
w_2 \\
w_3 \\
w_4 \\
w_5 \\
w_6
\end{pmatrix}.
\]

The binary block code \(W = \{w_1, w_2, w_3, w_4, w_5, w_6\} \), determines a hyper BCK-algebra \((H, *, w_1) \). Let \(X = \{w_4, w_5, w_6\} \) and \(A : X \rightarrow W \), \(w_i \mapsto w_i, (i \in \{4, 5, 6\}) \) be a hyper BCK-function which determines the binary block code \(U = \{111, 110, 101, 100, 010, 001\} \). Remark that the code \(V \) is a subset of the code \(U \).
Proposition 4.9. Out of the above notations, if we assume that there is not \(x \in \{ w_1, w_2, ..., w_n \} \) such that for any \(y \in I; x \ll y \). Then, \(I \) determines a hyper BCK-ideal in the hyper BCK-algebra \(H \).

Proof. since \(\theta \in I \), it will be sufficient to prove the property \((H1_2)\) for these hyper BCK-ideal.

Let \(x, y \in H \) such that \(x \ast y \ll I \) and \(y \in I \).

If \(x, y \) are not compared or \(x \gg y \) and if \(x \notin I \), then \(x \ast y = \{ x \} \ll I \).

Since \(x \notin I \), then \(\theta \in x \ast z = \{ x \} \). Thus \(x = \theta \in I \) contradiction. Therefore \(x \in I \).

If \(x \ll y \), with \(y \in I \), then \(x \in I \). \(\Box \)

Example 4.10. Let \(V = \{000\} = \{w_1\} \) be a binary block code. Let \(M_V = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \) be the associated matrix. By Proposition 2.8 in [3], we construct the matrix

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
w_1 \\
w_2 \\
w_3 \\
w_4 \\
w_5
\end{pmatrix}
\]

The binary block code \(W = \{ w_1, w_2, w_3, w_4, w_5 \} \), determines a hyper BCK-algebra \((H, \ast, w_1)\). Let \(X = \{ w_3, w_4, w_5 \} \) and \(\tilde{A} : X \rightarrow W, w_i \mapsto w_i, (i \in \{3, 4, 5\}) \) be a hyper BCK-function which determines the binary block code \(U = \{111, 000, 1000, 010, 001\} \). It is clear that the code \(V \) is a subset of the code \(U \).

Since there are not \(w_2 \leq_c w_3, w_4 \) and \(w_5 \), then set \(I = \{ w_1, w_4, w_5, w_6 \} \) is a hyper BCK-ideal.

5. CONCLUSION

In this work, we have studied the connection between hyper BCK-algebras and coding theory. We have also proved that to each hyper BCK-algebras (hyper BCK-function) we can associated a binary block codes. Moreover we establish the link between the hyper BCK-algebra constructed from a binary block code and hyper BCK-ideal on a hyper BCK-algebra.

Acknowledgments
The authors wish to thank the anonymous reviewers for their valuable suggestions

References

Atamewoue Tsafack Surdive
Department of Mathematics, University of Yaoundé 1, P.O.Box 47, Yaoundé, Cameroon
Email: surdive@yahoo.fr

Njeya Selestin
Department of Mathematics, Higher Teacher Training College, University of Yaoundé 1, P.O.Box 47, Yaoundé, Cameroon
Email: ndjeyasyahoo.fr

Lele Célestin
Department of Mathematics, University of Dschang, P.O.Box 67, Dschang, Cameroon
Email: celestinleleyahoo.com